Laser forming (LF) is a highly flexible rapid prototyping and low-volume manufacturing process, which uses laser-induced thermal distortion to shape sheet metal parts without hard tooling or external forces. Its advantages include easiness to control, eliminated need for tooling and contact, excellent energy efficiency, variety of applications, and possibility to form hard-to-formed materials.
Simple examples of parts produced by this method are beverage containers, angle brackets, or connecting rods. Thermo-mechanical forming, however, enables parts (sheet metal, rod, pipe, or shell) to be formed without external forces and does not require the use of dies.
Laser forming is a type of thermo-mechanical forming and may be used to form an angle bracket, for example, without using dies. More complex parts, such as connecting rods to involve bulk forming, can only be made by traditional forming methods. However, where laser forming can be used, it also serves as a useful tool for rapid prototyping.
Laser forming (LF) is a highly flexible rapid prototyping and low-volume manufacturing process, which uses laser-induced thermal distortion to shape sheet metal parts without hard tooling or external forces. A schematic of the laser forming process is shown in Figure 1. After laser forming, the shape of the sheet material will be changed, as shown in Figure 2a-c.
Figure 1: Schematic of Laser forming process
Compared with traditional metal forming technologies, laser forming has many advantages:
Therefore, laser forming has potential applications in aerospace, shipbuilding, microelectronics, automotive industries, etc. The rapid, flexible and low-cost metal forming can improve the competitiveness of these industries. Examples of Laser formed parts are given in Figure 2 a-c.
Figure 2 a-c: Examples of Laser formed parts
The technique for laser forming is very similar to that for laser surface heat treatment and involves scanning a defocused beam over the surface of the sheet metal to be formed. Moving the laser beam along a straight line without interruption causes the sheet to bend along the line of motion (Figure 3).
The components of laser forming system include:
Figure 3: Schematic of the laser beam bending process
Figure 4: Photos of three sheet metals bent using a laser
The typical bend angle that is achieved in single step is about 2°, but may be as high as 10°. The total bend angle can be as high as 90° and higher by repetition of the process. The bend angle obtained after the first scan is greater than the bend angle obtained for each of subsequent scans. However, after the first scan, the bend angle increases almost in proportion to the number of the scans.
More complex shapes can be obtained by offsetting each track by a small amount. In this case, the radius of the part produced depends, among other processing parameters, on the amount of offset of each track. The smaller the offset, the smaller the radius.
The bend angle that is achieved for each step increases with a decrease in sheet thickness due to a resulting decrease in bending restraint. The bend angle per step, however, decreases with a decrease in plate width. This is because with decreasing plate width, the volume of material that acts as a heat sink reduces and as a result, the temperature gradient associated with the process decreases, resulting in a reduced compressive strain and thus bend angle. On the contrary, for high width-to-thickness ratios greater than 10, the bend angle is almost independent of the plate width.
Total Materia Horizon 包含独家数万种金属和热处理工艺的断裂力学性能数据集,包括 K1C、KC、裂纹扩展和 Paris 公式参数。
申请 Total Materia Horizon免费试用帐户,加入来自全球 120 多个国家超过 500,000 名用户的大家庭。