马氏体钢 (MART)
Mg-Al-Zn 合金:第一部分
IN-939 维修机制的开发和寿命估算:第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Total Materia New Application Launch! 2021年2月10日
Total Materia New Application Launch! 2021年3月10日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Rotary forging is a specific cold forging technology which uses incremental steps locally with the material to accurate, precision results. Some of the main advantages of rotary forging when compared with conventional methods include among others, greater dimensional accuracy, better surface finish quality and material hardening and optimized grain structure.
With the development of industrial technology, precision forging, or net-shape forging, has become increasingly popular due to savings in material, energy and finishing steps. However, many of the new components, because of their shape complexity and complicated tool design and high load requirements, are challenging the current precision forging technology beyond its current level of technology. To meet the requirement, there is a renewed interest in incremental forming, especially rotary-type incremental forming processes, such as swaging, cross-wedge rolling, ring rolling, spinning and rotary forging.
Rotary forging is a specific cold forging technology. During the forming process, the material contacts with the tools and deforms locally step by step. Rotary forming is especially suitable for forming the flat disk work pieces.
Rotary forging is a combination of two actions, rotational and an axial compression movement, for precise component forming that can be carried out cold or hot. Examples of parts manufactured by this process are wheel preforms, gears, discs, rings, etc. This technology enables greater use to be made of materials, minimizing (in some cases eliminating) machining and welding operations. Rotary forging requires less force (between 5% to 20%) for conventional forming presses, due to a reduction in contact and friction; resulting in smaller presses and simpler tools.
Benefits of rotary forging include shorter cycle times, better mechanical properties from the superior working of the material and high material utilization. All this is done with very cost effective tooling.
Compared with the conventional forging technology, cold rotary forging offers the following advantages: lower level of noise and vibration, uniform quality, smooth surface, close tolerance and considerable savings in energy and materials cost. Additionally, because of the eccentric load in cold rotary forging, the stress state of cold rotary forging press is very complicated and the life of the bear is relatively low.
At present, many studies have been done on the cold rotary forging process due to its significant advantages. In brief, these studies mainly focused on measuring the pressure distribution at the contact area, calculating and verifying the power parameters, analyzing the metal flow by using analytical and experimental methods and analyzing by the rigid plastic FE method.
Cold rotary forging is an advanced and innovative metal forming technology that is used to manufacture a wide variety of mechanical components such as disks, rings, flanges and gears. During the cold rotary forging process (shown in Fig. 1), the conical upper die continuously oscillates around the vertical machine axis at a constant revolution speed n. Simultaneously, the lower die pushes the work piece vertically at a constant feed rate v so as to cause it to be subjected to axial compression. Thus, after the work piece is pressed repeatedly for several times, the plastic deformation will be completed perfectly.
The principle of cold rotary forging is illustrated schematically in Figure.1. Different from conventional forging, the upper die in cold rotary forging is a conical die and can continuously oscillate around the vertical machine axis. Simultaneously the lower die pushes the work piece continuously so as to cause the work piece to be subjected to axial compression. Thus, when the work piece is pressed repeatedly for several times, the plastic deformation of the work piece will be completed perfectly.
Significant advantages have allowed cold rotary forging to have a variety of applications in many industrial fields such as automobile, machine tool, electrical equipment, cutting tool and hardware. Due to its potential advantages and wide application prospects, many studies have been done on the cold rotary forging process.
Summarily, most of these studies have concentrated primarily on measuring the pressure distribution at the contact area, calculating and verifying the power parameters) and analyzing the metal flow by analytical and experimental methods. Over the past few decades, the FE method has been applied to analyze the cold rotary forging process. Wang et al. developed a 3D rigidplastic finite element code in the FORTRAN language to analyze the cold rotary forging process of a ring workpiece. Yuan et al. used the 3D rigid-plastic finite element software DEFORM to simulate the cold rotary forging.
Rotary Forging Advantages as Compared with Conventional Forging
Technological:
Economic:
Date Published: Apr-2016
输入搜索词:
搜索项
全文 关键字
标题 摘要
Heat treatment diagrams are available for a huge number of materials in the Total Materia database.
Heat treatment diagrams covering hardenability, hardness tempering, TTT and CCT can all be found in the standard dataset.
To select materials by special properties, you can use the special search check boxes in the Advanced Search module.
To define the search criteria, all you have to do is select the country/standard of interest to you from the ‘Country/Standard’ pop-up list and to check ‘Heat Treatment Diagram’ box, situated in the Special Search area of the form in the lower part of the Advanced Search page.
Click Submit.
After selecting the material of interest to you, click on the Heat Treatment link to view data for the selected material. The number of heat treatment records is displayed in brackets next to the link.
All available heat treatment information will then be displayed for the chosen material.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.