Atmospheric Corrosion of Aluminum Alloys

Abstract:

Relative humidity, temperature, sunshine, pollutants, salinity all play a significant role in the atmospheric corrosion rate of materials and when very specific conditions are taken into consideration e.g. subtropical marine environments, can result in some of the most extreme corrosion conditions possible.
As one of the most widely produced metals on the planet, aluminum is the subject of many investigations in this area with at times, some interesting results.

Except for ferrous metals, aluminum is one of the most produced metals globally. Aluminum has many advantageous properties such as lightness, suitability for surface treatments, functional advantages of extruded and cast semi-products, high thermal and electrical conductivity. Aluminum forms a diverse group of alloys, which gives a wide range of properties and uses. It is also easy to form and recycle; the recycling of aluminum requires only 5% of the energy it takes to extract the metal from its ore. Aluminum has good corrosion resistance, especially in the atmosphere, due to the natural oxide layer.

Atmospheric corrosion is one of the most common types of corrosion responsible for the degradation metallic structures, devices, and products exposed to the atmosphere. Atmospheric conditions such as relative humidity, temperature, sunshine period’s pollutants, salinity, etc. play an essential role in corrosion of the exposed metals. In particular, the tropical and subtropical marine environment introduces one of the most aggressive conditions which results in serious atmospheric corrosion of metals.

Aluminum is widely used in plenty of industrial applications such as construction, electrical engineering, transport, and especially in the food industry for the manufacture of processing, production, storage and transportation equipment and machinery.

In the paper of Li T. et al., corrosion product formed on 2A12 Al alloy after 3 months of exposure in South China Sea atmosphere was analyzed by various surface analysis techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray analysis (EDXA), x-ray protoelectron spectroscopy (XPS), and x-ray diffraction (XRD). The mechanism for atmospheric corrosion of Al alloy in the tropical marine environment was analyzed too. The authors realized that the atmospheric exposure usually took 1 year or more for a study cycle. Furthermore, it is worth pointing out that there is no typical four-season climate in the test location.

Figure 1 shows the optical views of macroscopic morphology of the top and bottom of the Al alloy specimen after 3 months of atmospheric exposure. It is clear that the specimen was heavily corroded, with localized corrosion occurring on the specimen surface. Both views show that the specimen lost brightness and became rough, with a yellowish gray patina present on the surface. Moreover, corrosion of the Al alloy specimen on the bottom was more serious than that on the top section.



Figure 1: Optical views of surface morphology of top and bottom parts of Al alloy specimen after 3 months of exposure in Xi-Sha Island atmosphere

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text
Keywords

Headings
Abstracts

The Total Materia database contains many corrosion resistant materials across a large range of countries and standards.

Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties, advanced property data and much more.

Using the Advanced Search page, it is possible to search for materials by their key descriptive words detailed in the standard title by using the Standard Description function of Advanced Search.

It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.

Then click Submit.

solution img

A list of materials will then be generated for you to choose from.

solution img

After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.

From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.

solution img

For example, by clicking on the chemical composition link on the subgroup page it is possible to view chemical composition data for the material.

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.